
Information Coding / Computer Graphics, ISY, LiTH

TNM084!

Procedural images

Ingemar Ragnemalm, ISY

1(81)

1(81)

Information Coding / Computer Graphics, ISY, LiTH

Lecture 7!
!

L-systems with variations!
!

Fractal Brownian Motion!
!

Fractal terrains and other applications

2(81)2(81)

Information Coding / Computer Graphics, ISY, LiTH

Lab 3!
!

Packaged with the lab material.!
!

Theme: Fractals!
!

3a: Procedural tree!
!

3b: Procedural terrrain

3(81)3(81)

Information Coding / Computer Graphics, ISY, LiTH

3a: I give you one piece of wood. You
make the tree.

4(81)4(81)

Information Coding / Computer Graphics, ISY, LiTH

3b: I give you a boring surface. You
make a nice terrain.

5(81)5(81)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1. What is the connection between L-systems, turtle graphics and
geometric fractals?!

!
2. How can you describe a Koch fractal with an L-system?!

!
3. What symbols are need for an L-system to describe a tree?!

!
4. How do you rescale noise between FBM levels?!

!
5. What FBM method has the lowest computational complexity?!

!
6. What is the computational advantage of gradient noise for FBM?

6(81)6(81)

Information Coding / Computer Graphics, ISY, LiTH

Last time: Fractals!
!

Geometric generations of self-similar fractals!
!

Fractal dimension!
!

Statistically self-similar fractals!
!

Self-squaring fractals in complex space

7(81)7(81)

Information Coding / Computer Graphics, ISY, LiTH

Julia set for λ = (0, 1) = 0 + j

Self-squaring fractals!
!

The Julia set!!
zk+1 = zk2 + λ

8(81)8(81)

Information Coding / Computer Graphics, ISY, LiTH

procedure DrawKoch(p1, p2, depth)!
!
if depth >= maxDepth then!
!
! MoveTo(p1)!
! LineTo(p2)!
! return!
!
else!
!
! calculate p3, p4, p5 as the three points inside the generator!
!
! DrawKoch(p1, p3, depth+1)!
! DrawKoch(p3, p4, depth+1)!
! DrawKoch(p4, p5, depth+1)!
! DrawKoch(p5, p2, depth+1)!
!
!
main procedure:!
!
Choose three generator points, g1, g2, g3!
!
DrawKoch(g1, g2, 0)!
DrawKoch(g2, g3, 0)!
DrawKoch(g3, g1, 0)!

p1 p2p3

p4

p5

g1

g2g3

We also did!
!Geometric self-similar fractals

9(81)9(81)

Information Coding / Computer Graphics, ISY, LiTH

And I also demonstrated!
!Turtle graphics

from turtle import *!
color('red', 'yellow')!
begin_fill()!
while True:!
 forward(200)!
 left(170)!
 if abs(pos()) < 1:!
 break!
end_fill()!
done()!

We will now combine these two!

10(81)10(81)

Information Coding / Computer Graphics, ISY, LiTH

L-systems!
!

Developed by A Lindenmayer to model the
development of plants!

!
Based on parallel string-rewriting rules!

!
Excellent for modelling organic objects and fractals

(Information mostly from the book and from a
course presentation of lost origin)

11(81)11(81)

Information Coding / Computer Graphics, ISY, LiTH

L-systems basics!
!

Begin with a set of "productions", replacement rules, and
a "seed" axiom!

!
Example:!

!
Rules (productions): B -> ACA and A -> B!

!
Axiom: AA!

!
Produces the sequence AA, BB, ACAACA, BCBBCB,

ACACACACACA...!
!

Strings are converted to graphics representaions as
turtle graphics commands

12(81)12(81)

Information Coding / Computer Graphics, ISY, LiTH

L-systems to turtle graphics!
!

Turtle commands:!
!

F: move forward while drawing!
f: move forward without drawing!

+: Turn left by angle ∂!
-: Turn right by ∂

13(81)13(81)

Information Coding / Computer Graphics, ISY, LiTH

Koch curve from L-systems!
!

F ➝ F + F - - F + F!
!

produces a Koch curve if!
!

+ = turn left!
- = turn right

F

- -

+

F F
F

+

Needs a rescaling for each step

14(81)14(81)

Information Coding / Computer Graphics, ISY, LiTH

Koch (90 degree version)!
!

Axiom: F-F-F-F!
!

Production: F -> F-F+F+FF-F-F+F

15(81)15(81)

Information Coding / Computer Graphics, ISY, LiTH

Dragon curve!
!

Axiom: Fl!
!

Productions:!
Fl -> Fl+Fr+!
Fr -> Fl-Fr-!

16(81)16(81)

Information Coding / Computer Graphics, ISY, LiTH

Extensions to L-systems!
!

• Productions dependent on neighboring symbols!
!

• Stack support (bracket symbols)!
!

• Stochastic: Choose productions randomly!
!

• Parametric: Variables can be passed between
productions!

!
• Numerical arguments

17(81)17(81)

Information Coding / Computer Graphics, ISY, LiTH

Extended L-system by stack
brackets: Simple tree!

!
F ➝ F [+ F] F [-F] F!

!
produces the simple branch using!

!
+ = turn left!
- = turn right!

[= push state!
] = pull state

18(81)18(81)

Information Coding / Computer Graphics, ISY, LiTH

Better tree!
!

F ➝ F [&F] [/F][&\F]!
!

with additional symbols for rotation.

19(81)19(81)

Information Coding / Computer Graphics, ISY, LiTH

Plants made by L-systems!
!

Many plants can be produced, but finding the production
rules is challenging

20(81)20(81)

Information Coding / Computer Graphics, ISY, LiTH

Road networks!
!

• Start with a single street!
• Branch and extend with parametric L-system!

• Parameters tweaked by custom values for
goals and constraints!

• Constraints allow for parks, bridges etc

21(81)21(81)

Information Coding / Computer Graphics, ISY, LiTH

Road networks by graph-based L-systems!
!

Checks for overlaps, rewrites the result to allow loops.
(Thesis by Martin Jormedal.)

22(81)22(81)

Information Coding / Computer Graphics, ISY, LiTH

Generation of buildings and cities!
!

Given the street map, generate buildings!
!

Base the buildings on simple shapes given by
the city blocks.

23(81)23(81)

Information Coding / Computer Graphics, ISY, LiTH

CGA (Computer Generated Architecture)!
!

CGA is a shape grammar used to create procedural
buildings. (Müller et al 2006). It works with operations such

as splits and repetitions.

24(81)24(81)

Information Coding / Computer Graphics, ISY, LiTH

CGA basic rules!
!

CGA has four basic rules:!
!

Basic split!
Scaling!
Repeat!

Component split!
!

These are far from enough for buildings but
can still describe complex shapes.

25(81)25(81)

Information Coding / Computer Graphics, ISY, LiTH

Mass modelling!
!

The CGA method also includes a stage of "mass
modelling", buidling the basic shape from a set of

components.!
!

A box is the most fundamental shape, from which a set
of basic shapes are formed:

26(81)26(81)

Information Coding / Computer Graphics, ISY, LiTH

CGA basic grammar!
!

The simplest CGA grammar builds from 16 rules, including
the "footprint", and on top of that rules about windows,

doors, roofs and more. Even with that many components,
only this simple buildings can be made:

27(81)27(81)

Information Coding / Computer Graphics, ISY, LiTH

https://doc.arcgis.com/en/cityengine/latest/tutorials/tutorial-6-basic-shape-grammar.htm

Simple example from CityEngine

28(81)28(81)

Information Coding / Computer Graphics, ISY, LiTH

My example!
!

A few rules similar to CityEngine/CGA

base -> foundation + flat!
!

flat -> walls + flat!
!

flat -> top!
!

walls -> side1+side2+side3+side4!
!

side ->ptop + pbottom!
!

pbottom -> split to ppart and p0!
!

ppart -> door!
!

ppart -> window Something like this (or
better if I had had the time)

29(81)29(81)

Information Coding / Computer Graphics, ISY, LiTH

CGA extended grammar!
!

CGA was extended further to produce more complex
models. It is clear that the grammar must be hand-tailored

for each type of architectures, but the results are impressive.

30(81)30(81)

Information Coding / Computer Graphics, ISY, LiTH

CGA vs L-systems!
!

Important difference between L-systems and CGA:!
!

L-systems are for growth. True also for road networks.!
L-systems typically are very self-similar on different resolutions.!

!
CGA is made for subdivision, and has very different rules on

different levels. Thus, it is not a fractal!

31(81)31(81)

Information Coding / Computer Graphics, ISY, LiTH

Interior!
!

Procedural generation of interiors was studied by
Andersson (2019).!

!
The problem includes:!

!
• Splitting into rooms!

• Placement of furniture!
!

The latter includes:!
!

• Collision detection!
• Analysis of free space for acceptable paths

32(81)32(81)

Information Coding / Computer Graphics, ISY, LiTH

A space split into rooms

33(81)33(81)

Information Coding / Computer Graphics, ISY, LiTH

Analysis of free space by a grid

34(81)34(81)

Information Coding / Computer Graphics, ISY, LiTH

Buildings + road networks = city generator!
!

Several algorithms for city generation exists!
!

• Algorithmic, L-systems or similar!
!

• Organic, build roads and buildings based on previous
generation of the map

35(81)35(81)

Information Coding / Computer Graphics, ISY, LiTH

Grammars or code?!
!

Should we use grammars or recursive code?!
!

Grammar: Write grammar, insert in reusable evaluator -
specific for each variant of the grammar!!

!
Recursive code: New program every time, but much

more flexible.!
!

When is either to prefer?

36(81)36(81)

Information Coding / Computer Graphics, ISY, LiTH

Every grammar can be rewitten as a program!
!

Examples: Koch, dragon, etc!
!

Example: Hilbert curve.!
!

Grammar: Process the string by the productions rules N
times. Then parse the string to do turtle graphics.!

!
Code: Formulate the grammar as code. Each production rule

is a function call.

37(81)37(81)

Information Coding / Computer Graphics, ISY, LiTH

Buildings?!
!

May use a sequence of function calls!
!

• Make basement, call:!
!

-> Make floors!
!

-> Make walls!
!

-> Split walls to parts !
!

Etc. Or do this as a grammar.

38(81)38(81)

Information Coding / Computer Graphics, ISY, LiTH

GLUGG City!
!

Simple prototype, needs more work despite considerable freedom
and many steps. Based on function calls.

39(81)39(81)

Information Coding / Computer Graphics, ISY, LiTH

Best method?!
!

Taste?!
!

Which method suits your problem?!
!

Problem suited for recursion?!
!

Code is easier to extend with new options. Grammars are
easier to edit.!

!
A grammar might be easier for non-programmers?

40(81)40(81)

